98 research outputs found

    Confidentiality of Substance Abuse Treatment Records in Integrated Care Setting

    Get PDF

    Predicting spatial spread of rabies in skunk populations using surveillance data reported by the public

    Get PDF
    Background: Prevention and control of wildlife disease invasions relies on the ability to predict spatio-temporal dynamics and understand the role of factors driving spread rates, such as seasonality and transmission distance. Passive disease surveillance (i.e., case reports by public) is a common method of monitoring emergence of wildlife diseases, but can be challenging to interpret due to spatial biases and limitations in data quantity and quality. Methodology/Principal findings: We obtained passive rabies surveillance data from dead striped skunks (Mephitis mephitis) in an epizootic in northern Colorado, USA. We developed a dynamic patch-occupancy model which predicts spatio-temporal spreading while accounting for heterogeneous sampling. We estimated the distance travelled per transmission event, direction of invasion, rate of spatial spread, and effects of infection density and season. We also estimated mean transmission distance and rates of spatial spread using a phylogeographic approach on a subsample of viral sequences from the same epizootic. Both the occupancy and phylogeographic approaches predicted similar rates of spatio-temporal spread. Estimated mean transmission distances were 2.3 km (95% Highest Posterior Density (HPD95): 0.02, 11.9; phylogeographic) and 3.9 km (95% credible intervals (CI95): 1.4, 11.3; occupancy). Estimated rates of spatial spread in km/year were: 29.8 (HPD95: 20.8, 39.8; phylogeographic, branch velocity, homogenous model), 22.6 (HPD95: 15.3, 29.7; phylogeographic, diffusion rate, homogenous model) and 21.1 (CI95: 16.7, 25.5; occupancy). Initial colonization probability was twice as high in spring relative to fall. Conclusions/Significance: Skunk-to-skunk transmission was primarily local (< 4 km) suggesting that if interventions were needed, they could be applied at the wave front. Slower viral invasions of skunk rabies in western USA compared to a similar epizootic in raccoons in the eastern USA implies host species or landscape factors underlie the dynamics of rabies invasions. Our framework provides a straightforward method for estimating rates of spatial spread of wildlife diseases

    Rabies Surveillance Identifies Potential Risk Corridors and Enables Management Evaluation

    Get PDF
    Intensive efforts are being made to eliminate the raccoon variant of rabies virus (RABV) from the eastern United States and Canada. The United States Department of Agriculture (USDA) Wildlife Services National Rabies Management Program has implemented enhanced rabies surveillance (ERS) to improve case detection across the extent of the raccoon oral rabies vaccination (ORV) management area. We evaluated ERS and public health surveillance data from 2006 to 2017 in three northeastern USA states using a dynamic occupancy modeling approach. Our objectives were to examine potential risk corridors for RABV incursion from the U.S. into Canada, evaluate the effectiveness of ORV management strategies, and identify surveillance gaps. ORV management has resulted in a decrease in RABV cases over time within vaccination zones (from occupancy (Ļˆ) of 0.60 standard error (SE) = 0.03 in the spring of 2006 to Ļˆ of 0.33 SE = 0.10 in the spring 2017). RABV cases also reduced in the enzootic area (from Ļˆ of 0.60 SE = 0.03 in the spring of 2006 to Ļˆ of 0.45 SE = 0.05 in the spring 2017). Although RABV occurrence was related to habitat type, greater impacts were associated with ORV and trapā€“vaccinateā€“release (TVR) campaigns, in addition to seasonal and yearly trends. Reductions in RABV occupancy were more pronounced in areas treated with Ontario Rabies Vaccine Bait (ONRAB) compared to RABORAL V-RGĀ®. Our approach tracked changes in RABV occurrence across space and time, identified risk corridors for potential incursions into Canada, and highlighted surveillance gaps, while evaluating the impacts of management actions. Using this approach, we are able to provide guidance for future RABV management

    Efficiency of different spatial and temporal strategies for reducing vertebrate pest populations

    Get PDF
    Understanding effectiveness of control strategies of pest species is fundamental for planning efficient and cost-effective management programs. In addition to culling rates, there are many potential factors that can determine efficiency of different management strategies, including demographic processes such as immigration rates, birth dynamics, and spatial ecology. We developed a stochastic, data-based simulation model of feral swine population dynamics which accounted for social dynamics in space. We tested the impacts of different spatio-temporal management strategies (i.e., culling rates, timing of culling during the year, spatial pattern of culling and strength of a barrier to immigration) on population response and efficiency. The spatial culling strategy dramatically impacted efficiency of control ā€“ using zonation required removal of fewer pigs (up to 46% less) to achieve similar reductions compared with other spatial strategies. Also, our spatially-explicit model predicted that lower culling intensities could be used to achieve population reductions when zonation was applied relative to predictions from harvesting theory based on simple logistic models. As culling intensity increased (ā‰„50% of target population annually) and the target population reached low density (\u3c5% of original density), effects of spatial strategy became less pronounced relative to immigration barrier effects. Lastly, for the same level of moderate culling effort, prioritization of culling during the low-birthing period generally resulted in faster population reduction to near zero abundance relative to prioritization during the high-birthing period, or spreading the work over a year period, but the significance of this effect depended on the spatial culling strategy and culling intensity. Our results imply that continually updating knowledge of current abundance during management may not only be important for determining culling quotas, but also for updating and optimizing management strategies. When the management goal is maximum population control, consideration of birth and spatial dynamics can increase return on management effort and bring to light management inefficiencies

    Costs and effectiveness of damage management of an overabundant species (\u3ci\u3eSus scrofa\u3c/i\u3e) using aerial gunning

    Get PDF
    Context. Management of overabundant or invasive species is a constant challenge because resources for management are always limited and relationships between management costs, population density and damage costs are complex and difficult to predict. Metrics of management success are often based on simple measures, such as counts, which may not be indicative of impacts on damage reduction or cost-effectiveness under different management plans. Aims. The aims of this study were to evaluate the effectiveness of aerial gunning for the management of wild pigs (Sus scrofa), and to evaluate how cost-effectiveness would vary under different relationships between levels of damage and densities of wild pigs. Methods. Repeated reduction events were conducted by aerial gunning on three consecutive days at three study sites. Using a removal model, the proportion of the population removed by each flight was estimated and population modelling was used to show the time it would take for a population to recover. Three possible damageā€“density relationships were then used to show the level of damage reduction (metric of success) from different management intensities and levels of population recovery, and these relationships were expressed in terms of total costs (including both damage and management costs). Key results. Populations were typically reduced by ~31% for the first flight, ~56% after two flights and ~67% after three flights. When the damage relationship suggests high damage even at low densities, the impact of one, two or three flights would represent a reduction in damage of 2%, 19% and 60% respectively after 1 year. Different damage relationships may show considerable damage reduction after only one flight. Removal rates varied by habitat (0.05 per hour in open habitats compared with 0.03 in shrubby habitats) and gunning team (0.03 versus 0.05). Conclusions. Monitoring the efficacy of management provides critical guidance and justification for control activities. The efficacy of different management strategies is dependent on the damageā€“density relationship and needs further study for effective evaluation of damage reduction efforts. Implications. It is critically important to concurrently monitor density and damage impacts to justify resource needs and facilitate planning to achieve a desired damage reduction goal

    An efficient method of evaluating multiple concurrent management actions on invasive populations

    Get PDF
    Evaluating the efficacy of management actions to control invasive species is crucial for maintaining funding and to provide feedback for the continual improvement of management efforts. However, it is often difficult to assess the efficacy of control methods due to limited resources for monitoring. Managers may view effort on monitoring as effort taken away from performing management actions. We developed a method to estimate invasive species abundance, evaluate management effectiveness, and evaluate population growth over time from a combination of removal activities (e.g., trapping, ground shooting) using only data collected during removal efforts (method of removal, date, location, number of animals removed, and effort). This dynamic approach allows for abundance estimation at discrete time points and the estimation of population growth between removal periods. To test this approach, we simulated over 1 million conditions, including varying the length of the study, the size of the area examined, the number of removal events, the capture rates, and the area impacted by removal efforts. Our estimates were unbiased (within 10% of truth) 81% of the time and were correlated with truth 91% of the time. This method performs well overall and, in particular, at monitoring trends in abundances over time. We applied this method to removal data from Mingo National Wildlife Refuge in Missouri from December 2015 to September 2019, where the management objective is elimination. Populations of feral swine on Mingo NWR have fluctuated over time but showed marked declines in the last 3ā€“6 months of the time series corresponding to increased removal pressure. Our approach allows for the estimation of population growth across time (from both births and immigration) and therefore, provides a target removal rate (above that of the population growth) to ensure the population will decline. In Mingo NWR, the target monthly removal rate is 18% to cause a population decline. Our method provides advancement over traditional removal modeling approaches because it can be applied to evaluate management programs that use a broad range of removal techniques concurrently and whose management effort and spatial coverage vary across time

    Accounting for observation processes across multiple levels of uncertainty improves inference of species distributions and guides adaptive sampling of environmental DNA

    Get PDF
    Understanding factors that influence observation processes is critical for accurate assessment of underlying ecological processes. When indirect methods of detection, such as environmental DNA, are used to determine species presence, additional levels of uncertainty from observation processes need to be accounted for. We conducted a field trial to evaluate observation processes of a terrestrial invasive species (wild pigsā€ Sus scrofa) from DNA in water bodies. We used a multiā€scale occupancy analysis to estimate different levels of observation processes (detection, p): the probability DNA is available per sample (Īø), the probability of capturing DNA per extraction (Ī³), and the probability of amplification per qPCR run (Ī“). We selected four sites for each of three water body types and collected 10 samples per water body during two months (September and October 2016) in central Texas. Our methodology can be used to guide sampling adaptively to minimize costs while improving inference of species distributions. Using a removal sampling approach was more efficient than pooling samples and was unbiased. Availability of DNA varied by month, was considerably higher when water pH was near neutral, and was higher in ephemeral streams relative to wildlife guzzlers and ponds. To achieve a cumulative detection probability \u3e90% (including availability, capture, and amplification), future studies should collect 20 water samples per site, conduct at least two extractions per sample, and conduct five qPCR replicates per extraction. Accounting for multiple levels of uncertainty of observation processes improved estimation of the ecological processes and provided guidance for future sampling designs

    Variation in host home range size decreases rabies vaccination effectiveness by increasing the spatial spread of rabies virus

    Get PDF
    Animal movement influences the spatial spread of directly transmitted wildlife disease through host-host contact structure. Wildlife disease hosts vary in home range- associated foraging and social behaviours, which may increase the spread and intensity of disease outbreaks. The consequences of variation in host home range movement and space use on wildlife disease dynamics are poorly understood, but could help to predict disease spread and determine more effective disease management strategies. We developed a spatially explicit individual-based model to examine the effect of spatiotemporal variation in host home range size on the spatial spread rate, persistence and incidence of rabies virus (RABV) in raccoons (Procyon lotor). We tested the hypothesis that variation in home range size increases RABV spread and decreases vaccination effectiveness in host populations following pathogen invasion into a vaccination zone. We simulated raccoon demography and RABV dynamics across a range of magnitudes and variances in weekly home range size for raccoons. We examined how variable home range size influenced the relative effectiveness of three components of oral rabies vaccination (ORV) programmes targeting raccoonsā€”timing and frequency of bait delivery, width of the ORV zone and proportion of hosts immunized. Variability in weekly home range size increased RABV spread rates by 1.2-fold to 5.2-fold compared to simulations that assumed a fixed home range size. More variable host home range sizes decreased relative vaccination effectiveness by 71% compared to less variable host home range sizes under conventional vaccination conditions. We found that vaccination timing was more influential for vaccination effectiveness than vaccination frequency or vaccination zone width. Our results suggest that variation in wildlife home range movement behaviour increases the spatial spread and incidence of RABV. Our vaccination results underscore the importance of prioritizing individual-level space use and movement data collection to understand wildlife disease dynamics and plan their effective control and elimination

    Rabies Surveillance Identifies Potential Risk Corridors and Enables Management Evaluation

    Get PDF
    Intensive efforts are being made to eliminate the raccoon variant of rabies virus (RABV) from the eastern United States and Canada. The United States Department of Agriculture (USDA) Wildlife Services National Rabies Management Program has implemented enhanced rabies surveillance (ERS) to improve case detection across the extent of the raccoon oral rabies vaccination (ORV) management area. We evaluated ERS and public health surveillance data from 2006 to 2017 in three northeastern USA states using a dynamic occupancy modeling approach. Our objectives were to examine potential risk corridors for RABV incursion from the U.S. into Canada, evaluate the effectiveness of ORV management strategies, and identify surveillance gaps. ORV management has resulted in a decrease in RABV cases over time within vaccination zones (from occupancy (Ļˆ) of 0.60 standard error (SE) = 0.03 in the spring of 2006 to Ļˆ of 0.33 SE = 0.10 in the spring 2017). RABV cases also reduced in the enzootic area (from Ļˆ of 0.60 SE = 0.03 in the spring of 2006 to Ļˆ of 0.45 SE = 0.05 in the spring 2017). Although RABV occurrence was related to habitat type, greater impacts were associated with ORV and trapā€“vaccinateā€“release (TVR) campaigns, in addition to seasonal and yearly trends. Reductions in RABV occupancy were more pronounced in areas treated with Ontario Rabies Vaccine Bait (ONRAB) compared to RABORAL V-RGĀ®. Our approach tracked changes in RABV occurrence across space and time, identified risk corridors for potential incursions into Canada, and highlighted surveillance gaps, while evaluating the impacts of management actions. Using this approach, we are able to provide guidance for future RABV management

    Quantifying site-level usage and certainty of absence for an invasive species through occupancy analysis of camera-trap data

    Get PDF
    Copyright Springer International Publishing This document is a U.S. government work and is not subject to copyright in the United States. https://doi.org/10.1007/s10530-017-1579-
    • ā€¦
    corecore